Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 31(17): 24724-24744, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38503955

RESUMEN

Clay minerals are abundant on Earth and have been crucial to the advancement of human civilization. The ability of clay minerals to absorb chemicals is frequently utilized to remove hazardous compounds from aquatic environments. Moreover, clay-based adsorbent products are both environmentally acceptable and affordable. This study provides an overview of advances in clay minerals in the field of groundwater remediation and related predictions. The existing literature was examined using data and information aggregation approaches. Keyword clustering analysis of the relevant literature revealed that clay minerals are associated with groundwater utilization and soil pollution remediation. Principal component analysis was used to assess the relationships among clay mineral modification methods, pollutant properties, and the Langmuir adsorption capacity (Qmax). The results demonstrated that pollutant properties affect the Qmax of pollutants adsorbed by clay minerals. Systematic cluster analysis was utilized to classify the collected data and investigate the relationships. The pollution adsorption mechanism of the unique structure of clay minerals was investigated based on the characterization results. Modified clay minerals exhibited changes in surface functional groups, internal structure, and pHpzc. This review provides a summary of recent clay-based materials and their applications in groundwater remediation, as well as discussions of their challenges and future prospects.


Asunto(s)
Contaminantes Ambientales , Agua Subterránea , Humanos , Arcilla/química , Minerales/química , Suelo/química , Adsorción
2.
Environ Pollut ; 347: 123711, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38447654

RESUMEN

Nano-scale Mn oxides can act as effective stabilizers for Tl in soil and sediments. Nevertheless, the comprehensive analysis of the capacity of MnO2 to immobilize Tl in such porous media has not been systematically explored. Therefore, this study investigates the impact of γ-MnO2, a model functional nanomaterial for remediation, on the mobility of Tl in a water-saturated quartz sand-packed column. The mechanisms involved are further elucidated based on the adsorption and aggregation kinetics of γ-MnO2. The results indicate that higher ionic strength (IS) and the presence of ion Ca(II) promote the aggregation of γ-MnO2, resulting from the reduced electrostatic repulsion between particles. Conversely, an increase in pH inhibits aggregation due to enhanced interaction energy. γ-MnO2 significantly influences Tl retention and mobility, with a substantial fraction of γ-MnO2-bound Tl transported through the column. This might be attributed to the high affinity of γ-MnO2 for Tl through ion exchange reactions and precipitation at the surface of γ-MnO2. The mobility of Tl in the sand column is influenced by the γ-MnO2 colloids, exhibiting either inhibition or promotion depending on the pH, IS, and cation type of the solution. In solutions with higher IS and Ca(II), the mobility of Tl decreases as γ-MnO2 colloids tend to aggregate, strain, and block, facilitating colloidal Tl retention in porous media. Although higher pH reduces the mobility of individual Tl, it promotes the mobility of γ-MnO2 colloids, facilitating a substantial fraction of colloidal-form Tl. Consequently, the optimal conditions for stabilizing Tl by γ-MnO2 involve either high IS and low pH or the presence of competitive cations (e.g., Ca(II)). These findings provide new insights into Tl immobilization using MnO2- and Mn oxide-based functional materials, offering potential applications in the remediation of Tl contamination in soil and groundwater.


Asunto(s)
Nanopartículas , Agua , Óxidos , Arena , Talio , Porosidad , Compuestos de Manganeso , Coloides , Suelo
3.
Sci Total Environ ; 926: 171960, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38547981

RESUMEN

Dissolved organic matter (DOM), a ubiquitous and active ingredient, is extensively involved in the transformation and migration of environmental pollutants in aquatic ecosystems. However, its chemical composition in acid mine drainage (AMD)-impacted rivers remains poorly characterized, hindering our understanding of its role in the biogeochemistry of key elements in contaminated fluvial environments. Here, we investigated the concentration of dissolved organic carbon (DOC) and spectroscopic and molecular characteristics of DOM in a headwater river contaminated with polymetallic mine-derived AMD in southern China. Terrestrial humic-like (C1) and typically groundwater-supplied aromatic protein/tyrosine-like (C2) substances which were partially from AMD, were identified as the predominant fluorescent components in the river water. Notably, tryptophan-like (C3) substances originating from tailings pond spills were only occasionally detected in the river. Although DOM biogeochemical transformations and degradation occurred in the lateral soil-water riparian interface and longitudinal in-stream transport processes, the molecular compositions identified by FT-ICR MS showed a core set of molecular formulae in the lignin/saturated compound/tannin region of the van Krevelen diagram of the water samples across the rivers. The complexation of DOM with typical metals in AMD was investigated using fluorescence quenching experiments. The results showed that the highest binding ability of Fe(III) to C2 followed by C1, with both detected in the experimental water samples. Mg(II) and Ca(II) strengthened the binding of DOM-Fe(III) when the ferric/DOM ratio was low, while Cu(II) weakened the binding of DOM-Fe(III) due to competition. Ca(II) inhibited the binding of Fe(III) to C1 but promoted the binding of the complex to C2 when both Cu(II) and Mg(II) were present. Since DOM-Fe(III) complexation was associated with the cotransport of AMD-derived metals/metalloids in diverse aqueous environments with multiple co-existing ions (typically Ca(II) input for remediation), our study on the composition of DOM and its complexation with metals can contribute to managing and remediating AMD-impacted rivers.

4.
J Contam Hydrol ; 259: 104254, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37826885

RESUMEN

Mining activities have long-term impacts on the groundwater of surrounding areas and deserve in-depth analysis and study. Herein, the geochemical mechanisms of acid mine drainage (AMD)-affected groundwaters were examined, and groundwater quality was assessed through water quality indices. 15 water samples from 7 domestic and 4 groundwater monitoring wells were tested for physical and chemical parameters in 2022, and multivariate statistical analysis was carried out with monitoring data from 21 domestic wells in 2010. The groundwater chemical composition varied from a predominantly Ca-HCO3 type in 2010 to a Ca-SO4 type in 2022. The isotopic values of δ18O and δD indicate that groundwater has not been significantly affected by evaporation. Changes in groundwater sulfate and total dissolved solids (TDS) levels over the twelve-year period confirmed the AMD infiltration impact on groundwater quality. The groundwater chemical properties changed more slowly than those of surface waters affected by AMD based on a cumulative increase in sulfate concentration of 29.94 mg/L. Changes in groundwater quality were investigated, namely, the spatiotemporal distribution of potentially toxic elements (PTEs), including Fe, Mn, Cd, Pb, and As. Mn concentrations in upstream groundwater areas near the mine decreased by 61.8% between 2010 and 2022. Conversely, groundwater in midstream areas had Mn concentrations of 2.25 mg/L and arsenic concentrations of 11.8 µg/L, both exceeding the WHO, 2022 standard. According to multivariate statistical analysis, Mn, Cd, and Pb originated from polymetallic minerals, whereas As was likely derived from the reduction of Fe/Mn hydroxyl oxides. AMD remediation improved contaminated upstream groundwater quality over 12 years, with a 36.8% improvement in WQI values. PTE distribution determined water quality changes; therefore, PTE contamination should be treated in mid- and downstream regions while contaminated groundwater should be treated upstream.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis , Cadmio/análisis , Plomo/análisis , Agua Subterránea/química , Sulfatos , China
5.
Environ Pollut ; 333: 121973, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37295708

RESUMEN

Biochar has been widely used for trace metal(loid) (TM) immobilisation in contaminated soils. However, studies on the physicochemical mobility of TMs related to biochar application are highly limited, hampering the evaluation of the immobilisation efficiency of biochar. Therefore, after confirming the ability of biochar to decrease soil Tl bioavailability, this study examined the release of Tl in dissolved and particulate forms in surface runoff and leachate from soil mixed with biochar at different dosages and grain sizes under artificially simulated rainfall and irrigation experiments. The rainfall experimental results showed that the dissolved Tl in the surface runoff decreased from 1.30 µg in the control group to 0.75 µg and 0.54 µg in the groups with 3% and 5% biochar application, respectively. With the same dosages (5%), the finer the biochar applied, the higher the immobilisation ability achieved in surface runoff and the lower the Tl amounts in the leachate, indicating that the grain size of biochar can impact Tl mobility in dissolved forms. Comparisons between rainfall and irrigation experiments indicated that raindrops disturb the soil-water surface and enhance Tl diffusion. The mass in particulate form accounted for more than 95% of lateral released Tl in surface runoff. However, biochar application did not decrease the enrichment ratio of Tl in the eroded sediments. Notably, the finest biochar group produced less mass of eroded Tl owing to the low flux of soil erosion, indicating that grain size would indirectly impact sediment-bound Tl lateral mobility. Colloidal particles should be highlighted as they carried a maximum TI of up to 38% in the rainfall leachate. Focusing on the effect of biochar application on Tl chemical- and physical mobility from the soil matrix to runoff, this study contributes the comprehensive understanding of the role of biochar in TM remediation.


Asunto(s)
Contaminantes del Suelo , Suelo , Talio , Carbón Orgánico , Agua , Contaminantes del Suelo/análisis
6.
Environ Geochem Health ; 45(3): 771-785, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35312930

RESUMEN

Combining environmental isotope analysis with principal component analysis can be an effective method to discriminate the inflows and sources of contamination in mining-affected watersheds. This paper presents a field-scale study conducted at an acid mine drainage (AMD)-contaminated site adjacent to a pyrite mine in South China. Samples of surface water and groundwater were collected to investigate transport in the vadose zone using stable isotopes of oxygen (δ18O) and hydrogen (δD) as environmental tracers. Principal component analysis of hydrogeochemical data was used to identify the probable sources of heavy metals in the AMD. The heavy metal pollution index (HPI) was applied to evaluate the pollution status of heavy metals in the groundwater. The groundwater associated with the Datai reservoir was recharged by atmospheric precipitation and surface water. On the side near the AMD pond, the groundwater was significantly affected by the soluble metals produced by pyrite oxidation. The concentrations of some metals (Al, Mn, and Pb) in all of the samples exceed the desirable limits prescribed by the World Health Organization (Guidelines for drinking-water quality, 4th edn. World Health Organization, Geneva, 2011). Among them, the concentration of Al is more than 30,000 times higher than the desirable limits prescribed by the World Health Organization (2011), and the concentration of Mn is more than 3000 times higher. The HPI values based on these heavy metal concentrations were found to be 10-1000 times higher than the critical pollution index value of 100. These findings provide a reference and guidance for research on the migration and evolution of heavy metals in vadose zone water in AMD-contaminated areas.


Asunto(s)
Agua Subterránea , Metales Pesados , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Calidad del Agua , Metales Pesados/análisis , Isótopos/análisis
7.
Sci Total Environ ; 835: 155437, 2022 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-35476947

RESUMEN

Hydraulic redistribution (HR), which is the passive movement of water through plant roots from wet to dry soil due to the water gradient, is important for plant physiology and ecohydrological processes. However, our poor knowledge on HR in the humid monsoon climate zone hampers the understanding of the interactions between vegetation and soil water during frequent droughts in evergreen forests. Thus, 5 years (2011-2015) of data, including meteorological parameters and soil moisture content at depths of 10, 30, 50, and 100 cm in soil profiles, were compared at one evergreen broad-leaved forest and at one clear-cutting forest site in south China. Analyses of soil moisture dynamics show that HR was frequently triggered within the depth of 30 cm at the evergreen broad-leaved forest, while (if any) was less visible at the clear-cutting forest site. The daily averaged magnitude of redistributed soil water reached the maximum of 0.81 mm/d. The HR mainly occurred during the monsoon dry season (i.e., from October to March of the following year), possibly indicating a different cause, i.e., asynchronous variations in rainfall and plant water use shape the seasonal patterns of soil water HR, compared to other humid zones. During the study period when HR occurred, the average daily HR in the soil profiles replenished approximately 34-50% of the water consumption in the 0-30 cm soil layer. The simulation results of a distributed hydrology-soil-vegetation model incorporating a HR scheme indicate that evapotranspiration enhanced during drought periods when HR occurred. In the future climate change context, comprehensive investigations on the water fluxes in the atmosphere-vegetation-soil continuum are needed to fully understand the effects of HR on the physiological responses of plants and on the water cycle.


Asunto(s)
Suelo , Agua , China , Bosques , Árboles/fisiología , Agua/fisiología
8.
Environ Pollut ; 291: 118209, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34563852

RESUMEN

Central Asia is one of many regions worldwide that face severe water shortages; nevertheless, water pollution in this region exacerbates the existing water stress and increases the risk of regional water conflicts. In this study, we perform an extensive literature review, and the data show that water pollution in Central Asia is closely linked to human activities. Within the Asian Gold Belt, water pollution is influenced mainly by mining, and the predominant pollutants are heavy metals and radionuclides. However, in the irrigated areas along the middle and lower reaches of inland rivers (e.g., the Amu Darya and Syr Darya), water pollution is strongly associated with agriculture. Hence, irrigated areas are characterized by high concentrations of ammonia, nitrogen, and phosphorus. In addition, the salinities of rivers and groundwater in the middle and lower reaches of inland rivers generally increase along the flow path due to high rates of evaporation. Soil salinization and frequent salt dust storms in the Aral Sea basin further increase the pollution of surface water bodies. Ultimately, the pollution of surface water and groundwater poses risks to human health and deteriorates the ecological environment. To prevent further water pollution, joint monitoring of the surface water and groundwater quantity and quality throughout Central Asia must be implemented immediately.


Asunto(s)
Monitoreo del Ambiente , Contaminantes Químicos del Agua , Agricultura , Asia , Humanos , Ríos , Contaminantes Químicos del Agua/análisis , Contaminación del Agua
9.
Chemosphere ; 280: 130743, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33975235

RESUMEN

Thallium (Tl) commonly occurs in shallow groundwater affected by acid mine drainage (AMD); however, our knowledge of the occurrence of Tl in shallow groundwater is limited. This study observes that the shallow groundwater in an AMD-impacted area in Southern China contains an elevated Tl concentration (22 µg/L) under the oxidizing conditions and a low Tl concentration (<1 µg/L) in the reducing environment. The groundwater Tl concentration is positively correlated with oxidation-reduction potential (Eh) and negatively correlated with Cl content. The modelling results of the Tl species demonstrate that Tl+, TlSO4-, TlCl, and TlNO3 are the main forms of Tl in groundwater. Tl may precipitate as Tl(OH)3 under weakly acidic to alkaline conditions. Drill-core analysis of wells indicates that the Tl content in the vadose zone is equal to the background soil Tl content under oxidizing conditions. However, under artificial reducing conditions, the Tl content at the 3-4 m depth below the groundwater level ranges from 1.6 to 3.5 µg/g. This finding demonstrates that Tl solute in groundwater migrates into the aquifer when redox conditions change. Mn-oxides and illite in the weak permeable aquifer are the key minerals for Tl adsorption; some major sites of illite start to uptake Tl from pH 8.0. This study highlights not only the geochemical distribution of Tl in groundwater but also the influences of changes in redox conditions caused by human activities on Tl enrichment in groundwater. Enhancing our understanding of the aqueous geochemistry of Tl is of significance for the prevention and control of Tl pollution.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , China , Monitoreo del Ambiente , Humanos , Minería , Suelo , Talio/análisis , Contaminantes Químicos del Agua/análisis
10.
Environ Geochem Health ; 43(11): 4415-4440, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33876342

RESUMEN

Metal contamination from base metal sulphide mines is a major environmental challenge that poses many ecological and health risks. We examined the metal concentrations in the Dabaoshan mine in South China in water, sediments, and aquatic organisms and their specific characteristics (i.e. size, body tissue, species, and habitat) along the Hengshi and Wengjiang River courses to assess acid mine drainage remediation efforts. Metal concentrations of arsenic, cadmium, chromium, copper, lead, nickel, thallium, and zinc were examined in tissues (i.e. gills, intestines, and muscles) of 17 freshwater species of fish, shrimps, and crabs. Metals in tissues followed the trend: intestines > gills > muscles; nearly all intestine samples exceeded the safe limits of metals analysed in this study. There is a positive correlation between distance from the mine and metal concentrations related to the flow of surface water and the habitat of aquatic organisms. The concentrations of arsenic, copper, and zinc were the highest in aquatic organisms, and the distribution was influenced by physical (distance from mine, currents, and seasonality), chemical (pH and competing ions), and biological (species, habitat, and predator-prey relation) factors. Large demersal fish and benthic fauna had higher concentrations of metals. Bioaccumulation and biomagnification of metals, as well as the high metal pollution index and target hazard quotient (arsenic, cadmium, copper, lead, thallium, and zinc), occurred in bottom feeders (C. aumtus, X. argentea) and fish belonging to higher trophic levels (P. fulvidraco, O. mossambicus). Lead and cadmium indicated the highest level of biomagnification from prey to predator. Health risks exist from the dietary intake of common aquatic species such as tilapia and carp besides crustaceans due to high arsenic, cadmium, lead, and thallium levels. Further reduction of metals is necessary to improve the effects of acid mine drainage in the catchment.


Asunto(s)
Carpas , Metales Pesados , Contaminantes Químicos del Agua , Animales , Organismos Acuáticos , China , Monitoreo del Ambiente , Sedimentos Geológicos , Metales Pesados/análisis , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
11.
Sci Total Environ ; 782: 146603, 2021 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-33836379

RESUMEN

Soil-to-vegetable migration of toxic metal(loid)s is a pivotal pathway of human exposure to chemical intoxication. Thallium (Tl) and arsenic (As) are highly toxic metal(loid)s but their co-occurrence in soils and vegetables remain poorly understood. Herein, the present study focuses on potential health risk arising from co-occurrence of TlAs in various common vegetables cultivated in different farmlands around an industrial area featured by cement production activities. The results reveal obvious co-contamination of Tl (2.28 ± 1.39 mg/kg) and As (102.0 ± 66.7 mg/kg) in soils. Fine particles bearing sulfide and other minerals associated with Tl and As are detected in fly ash from cement plant, which can be migrated by wind over a long distance with hidden but inevitable pollution. Bioaccumulation Factor (BCF) and Enrichment Factor (EF) show that taro and corn preferentially accumulate Tl especially in underground parts. Hazard Quotient (HQ) indicates that consumption of these vegetables may result in chronic poisoning and/or even carcinogenic risk. The study highlights that the pathway and high risk of co-contamination of TlAs in the nearby farmlands posed by cement-making activities should be highly concerned.


Asunto(s)
Arsénico , Metales Pesados , Contaminantes del Suelo , Arsénico/análisis , China , Monitoreo del Ambiente , Granjas , Humanos , Metales Pesados/análisis , Medición de Riesgo , Suelo , Contaminantes del Suelo/análisis , Talio/análisis
12.
Environ Sci Pollut Res Int ; 27(27): 33712-33722, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32533487

RESUMEN

This study investigated the effect of typical stabilizers on hydraulic properties, immobilization, and leachate characteristics based on the diffusive gradient thin-films technique (DGT) and a leaching experiment. Three types of stabilizers were classified based on various characteristics of soil field capacity (θf), and their immobilization effects were as follows: (i) θf increased and the immobilization of Cd was achieved with nanohydroxyapatite, increasing θf by 19.36% and decreasing the bioavailable Cd by 78.84%; (ii) the increasing θf conversely inhibited cadmium stabilization. Straw biochar averagely promoted θf by 17.39%, while the stabilization was suppressed; (iii) other stabilizers (zeolite, montmorillonite, and sepiolite) had no significant effect on θf and immobilization. It is suggested that stabilization depends on chemical mechanisms and is probably also affected by hydraulic mechanisms. The first types of stabilizers formed precipitates with poor solubility, and the strong affinity of heavy metals to soil particles can account for that the increasing θf had a negligible influence on the dissolution equilibrium of the heavy metals. Attapulgite also belongs to this type. The second and third types of stabilizers primarily adsorbed cadmium through ion exchange, resulting in the relatively easy heavy metal release. Increasing θf facilitated the desorption of heavy metals in the case of the second stabilizer type. However, the inconspicuous change in θf caused by the third stabilizer type had no impact on stabilization. Moreover, Cd leaching was positively correlated with bioavailable Cd and soil permeability. Heavy metal migration induced by colloids less than 90 nm in coarse biochar treatments deserves further research.


Asunto(s)
Metales Pesados/análisis , Oryza , Contaminantes del Suelo/análisis , Cadmio/análisis , Carbón Orgánico , Suelo
13.
Sci Total Environ ; 728: 138809, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32570311

RESUMEN

Municipal solid waste incineration (MSWI) fly ash generally contains substantial toxic elements which can be easily released into the environment, giving rise to serious environmental contaminations. In order to dispose of these harmful fly ashes safely and feasibly, an advanced and reliable strategy is needed. This work presented an integrated method designed for recycling of valuable copper (Cu) and zinc (Zn) through hydrochloric acid leaching and sequential extraction (using LIX 860N-I and Cyanex 572 for Cu and Zn as extractants, respectively) and clean-up of cadmium (Cd) and lead (Pb) in consequential waste effluent by adsorption with a versatile material - bundle-like hydroxyapatite (B-HAP). The method was applied in the pilot scale tests with recovery yields of 95% and 61% for Cu and Zn, respectively. Additionally, satisfied removal efficiencies of Cd and Pb (over 95% for both) were realized, reaching the acceptable emission level for Cd and Pb in China. A scenario based on the latest MSW data in 2018 in Guangzhou was assessed through the integrated pilot experiment. The evaluation demonstrates a reduction of a $ 20.8 million cost; over 48.2 k GJ of energy consumption and 5800 tons of CO2 emission can be reduced in 2018, comparing to that landfilled in hazardous waste sites, which reveals great benefits. The valuable metal recovery in combination with decontamination of toxic elements/substances as a complete and combined process gives a promising fly ash treatment strategy in future.

14.
Sci Total Environ ; 724: 138122, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32408435

RESUMEN

Dabaoshan Mine Site (DMS) is the largest polymetallic mine in South China. The Hengshi River flowing next to DMS receives acid mine wastes leaching from the tailings pond and run-off from a treatment plant, which flows into the Wengjiang River. This study focuses on spatiotemporal distribution and mobilization of As, Cd, Pb, and Zn along the Hengshi River, groundwater, fluvial sediments, and soils, with a focus on As due to its high toxicity and the fact that mining is one of the main sources of contamination. Geochemical analyses (heavy metals, grain-size, X-ray diffraction, organic carbon and sulfur content) followed by geochemical modeling (PHREEQC) and statistical assessment were done to determine the physicochemical characteristics, toxicity risks, and behavior of heavy metals. Near the tailings pond, heavy metal concentrations in surface water were 2-100 times higher than the Chinese surface water standard for agriculture. Although water quality during the dry season has improved since the wastewater treatment plant started, heavy metal concentrations were high during rainy season. In groundwater, heavy metal concentrations were low and pose little risks. Soils along the Hengshi River were disturbed and they did not show any specific trends. The potential ecological risk of heavy metals was ranked as Cd > As > Cu > Pb > Zn in sediments and Cd > Cu > Pb > As > Zn in soils indicating multi-metal contamination and toxicity. As(III) was the predominant species in surface water during the dry season, whereas As(V) dominated during the rainy season. Arsenic levels in most sites exceeded the Chinese soil standard. Although As is assumed to have a moderate ecological risk in sediments and low risk in soils, anthropogenic activities, such as mining and land-use changes contribute to the release of As and other heavy metals and pose a risk for local residents.

15.
Artículo en Inglés | MEDLINE | ID: mdl-31941097

RESUMEN

Adding chelating agents is a critical technique of heavy metal activation for enhancing phytoextraction through the formation of soluble metal complexes which will be more readily available for extraction. The preliminary, dynamic, equilibrium activation experiments and speciation analysis of Pb, Cd and Tl in contaminated red soils were used to select six chelates with relatively good activation performance from nine chelates, and the effects of dosage and pH on the heavy metals activation were studied systematically. Results showed that the activation of Pb, Cd and Tl by chelates reached equilibrium within 2 h, and the activation process showed three stages. Under neutral conditions, chelates had better activation performance on Pb- and Cd-contaminated soils. Except for S,S-ethylenediamine disuccinic acid (S,S-EDDS) and citric acid (CA), the maximum equilibrium activation effect (MEAE) of ethylenediaminetetraacetic acid (EDTA), N,N-bis (carboxymethyl) glutamic acid (GLDA), diethylenetriaminepentaacetic acid (DTPA) and aminotriacetic acid (NTA) was over 81%. The MEAE of Tl-contaminated soil was less than 15%. The decreasing order of the dosage of chelating agents corresponding to MEAE for three types of contaminated soils was Pb-, Cd- and Tl-contaminated soil, relating to the forms of heavy metals, the stability constants of metal-chelates and the activation of non-target elements Fe in red soil. Under acidic conditions, the activation efficiencies of chelates decreased to differing degrees in Pb- and Cd-contaminated soils, whereas the activation efficiencies of chelating agents in Tl-contaminated soils were slightly enhanced.


Asunto(s)
Cadmio/química , Quelantes/química , Plomo/química , Contaminantes del Suelo/química , Talio/química , Biodegradación Ambiental , Ácido Cítrico/química , Ácido Edético/química , Etilenodiaminas/química , Glutamatos/química , Glicina/análogos & derivados , Glicina/química , Ácido Pentético/química , Suelo/química , Succinatos/química
16.
Int J Phytoremediation ; 21(14): 1415-1422, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31272190

RESUMEN

The effects of chelating agents on heavy metal activation in Cd- and Pb-contaminated soils were studied through a dynamic activation experiment. An evaluation method for the measuring comprehensive suitability of chelating agent was established by calculating indexes for the degree of activation effect suitability and activated heavy metals' half-life suitability. The following results were obtained: in Cd- and Pb-contaminated soils, heavy metal activation effects reached or approached maximum activating effects within 1 d and subsequently showed different levels of decline in all chelating agent treatment conditions. Declines in activation effects similarly subjected to the law of exponents over time and to the goodness of fit in DTPA, NTA, and GLDA ranged from 0.80 to 0.98. For Cd- and Pb-contaminated soils, chelating agents' levels of comprehensive suitability (H) were recorded as follows: NTA(1.40) > GLDA(1.31) > DTPA(1.14) > EDTA(1.00) > EDDS(0.14) > CA(0.06) and GLDA(1.56) > DTPA(1.48) > EDTA(1.00) > NTA(0.78) > EDDS(0.26) > CA (0.02). GLDA and DTPA are both suitable for Cd and Pb phytoextraction. Moreover, NTA and GLDA are optimal chelating agents for Cd and Pb phytoextraction, respectively.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Biodegradación Ambiental , Quelantes , Ácido Edético
17.
Artículo en Inglés | MEDLINE | ID: mdl-31126009

RESUMEN

A total of 43 water and sediment samples, and 34 Corbicula fluminea samples were collected in Xijiang River in southern China to determine the spatial distribution and sources of 12 metals/metalloids (V, Co, Cr, Ni, Cu, Mn, Zn, Cd, Pb, As, Sb, and Tl) and to assess the pollution levels and ecological risks of the pollutants. The results showed that the levels of the metals/metalloids (except for Tl) in the river water from almost all of the sampling sites met the Chinese national surface water quality standards. However, the concentrations of the metals/metalloids in the sediments exceeded the background values by a factor of 1.03-56.56 except for V, Co, and Mn, and the contents of Zn, Cd, and Pb in the Corbicula fluminea soft tissue exceeded the limits of the Chinese Category I food Quality Standards. The spatial distribution analysis showed that the concentrations of the contaminants in the lower reaches of Xijiang River were higher than in the upper reaches. The bioaccumulation factor (BAF), biota-sediment accumulation factor (BSF), geo-accumulation index (Igeo), and the potential ecological risk index (RI) were obtained to assess the pollution levels and ecological risks. The results indicated that Cu, Cd, and Zn were the most prone to bio-accumulation in the Corbicula fluminea soft tissue, and the lower reaches showed a much higher pollution level and risk than the upper reaches. The metals/metalloids in the sediments posed serious threat on the aquatic ecosystem, of which Cd, As, and Sb are the most risky contaminants. The results of principal component analysis (PCA) indicated Cr, Ni, Cu, Mn, Cd, Pb, and As in the sediments came from relevant industrial activities, and V and Co originated from natural sources, and Sb from mining activities, Zn and Tl came from industrial activities and mining activities.


Asunto(s)
Contaminación Ambiental/análisis , Sedimentos Geológicos/análisis , Sedimentos Geológicos/química , Metaloides/análisis , Metales Pesados/análisis , Ríos/química , Contaminantes Químicos del Agua/análisis , Animales , China , Corbicula , Monitoreo del Ambiente/métodos , Minería , Medición de Riesgo/métodos , Análisis Espacial
18.
Artículo en Inglés | MEDLINE | ID: mdl-31013864

RESUMEN

Chelators including DTPA (diethylene triamine pentaacetic acid) and oxalic acid were selected for inducing phytoextraction of heavy metals (HMs) from Pb-, Tl-, and Pb-Tl- contaminated soil, in which heavy metals leakage was highly remarkable. Results showed that compared with the control group without chelating agent under planting conditions, the extraction efficiency (i.e., uptake coefficient) of Pb, Tl increased by 86%, 43% from Pb-Tl- contaminated soil in the presence of oxalic acid, and there was no significant change in heavy metal leakage under rainfall conditions. It was the best phytoremediation scheme in this work. Under rainfall conditions, the HMs concentration in the leachate showed a linear decreasing trend. Acid rain promoted the leakage of heavy metals, and the average leached amount of Tl increased by 1.47 times under acid rain conditions. However, for Pb, DTPA was the main influencing factor, followed by acid rain.


Asunto(s)
Biodegradación Ambiental , Plomo/química , Ácido Oxálico/química , Ácido Pentético/química , Contaminantes del Suelo/química , Talio/química , Quelantes , Suelo/química
19.
Waste Manag Res ; 36(12): 1166-1176, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30112977

RESUMEN

Rapid economic development accelerates the generation of municipal solid waste (MSW), and thereby calls for an effective and reliable waste management strategy. In the present work, we systematically investigated the status of MSW management in a mega-city of China (Guangzhou). The data were collected from literatures, government statistics and field sampling work. It can be found that a combination of waste sorting by individual residents and a necessary quantity of sanitation workers is one of the most feasible strategies to achieve a sustainable waste management. With implementation of that integrated strategy, approximately 0.03 million tons of metal, 0.24 million tons of paper, as well as 0.46 million tons of plastics can be recycled/recovered for further processing. A cost reduction of 70 million US$ is achieved in comparison with the un-optimized system due to the sale revenue of recyclable materials and the saving from waste disposal fees. The values of environmental assessment were expressed as environmental load units. The developed scenarios could decrease the environmental cost, namely, 0.66 million US$. Based on the studies, waste sorting is urgently needed in Guangzhou. However, to make the proposed strategy to be more economically feasible, the sorting should be performed individually as well as with public participation. The establishment of a win-win situation for all stakeholders is an effective path for the improvement of the integrated waste management system.


Asunto(s)
Eliminación de Residuos , Administración de Residuos , China , Ciudades , Humanos , Residuos Sólidos
20.
Waste Manag ; 76: 225-233, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29510946

RESUMEN

Fly ash commonly accumulates a significant amount of heavy metals and most of these heavy metals are toxic and easily leached out to the environment, posing risks to human health. Thus, fly ash has been classified as a type of hazardous waste and requires proper treatment before disposal in specific landfill sites for hazardous waste. In this study, a hydrometallurgical process developed to recover copper and zinc performed in pilot scale close to industrial scale followed by a landfill compliance leaching test of the ash residue is evaluated. LIX860N-I and Cyanex 572 gave high selectively for extractions, a yield efficiency of 95% and 61% was achieved for copper and zinc respectively. Results of pilot experiments reveals that the combining metal recovery/recycling and landfill disposal of the ash residue in a local regular landfill was demonstrated to be a technically and economically effective strategy. Specifically, the economic and environmental aspects of a scenario, in which the fly ash generated in Guangzhou is processed were systematically assessed. the assessment results show that a 7.15 million US$ of total expense reduction, a less energy cost of 19k GJ as well as 2100 tons less CO2 emissions could be achieved annually comparing to the current alternative, direct disposal of the fly ash as hazardous waste. The results reveal that the hydrometallurgical process has industrial application potential on both economic and environmental aspects and further optimization of the process can give more accurate assessment of the cost and environment effect. In addition, leaching tests and evaluation of solid residue according to the regulations specific to the country should be studied in future.


Asunto(s)
Ceniza del Carbón , Cobre , Zinc , Carbono , Incineración , Metales Pesados , Eliminación de Residuos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...